Bio-Medical Engineering

Courses offered by Department

BME101 - Introduction to Biomedical Engineering
This course is open only to freshmen and new transfer students. This is seminar course to introduce freshmen to biomedical engineering field and multiple core career paths they can pursue . Faculty and recent BME graduates are invited to talk about their experience at their workplace and how they chose their career paths.
0 credits
BME105 - Introduction to Human Physiology I
This course is open only to freshmen and transfer students. An overview of human physiology is presented as an introduction to subsequent core courses in the Biomedical Engineering curriculum. Not intended to be an exhaustive review of physiology, the course will instead emphasize key examples that highlight understanding of the interaction between the biomedical and engineering worlds. This course is the first of two freshman courses; this one will focus on cellular and neural-system basic physiology.
2 credits
BME106 - Introduction to Human Physiology II
Prerequisite: BME 105. This course is open only to freshmen and transfer students. An overview of human physiology is presented as an introduction to subsequent core courses in the Biomedical Engineering curriculum. Not intended to be an exhaustive review of physiology, the course will instead emphasize key examples that highlight understanding of the interaction between the biomedical and engineering worlds. This course is the first of two freshman courses; this one will focus on basic physiology of respiratory and cardiovascular systems.
1 credits
BME111 - Introduction to Physiology
Pre or Corequisites: FED 101. An overview of human physiology is presented as an introduction to subsequent core courses in the Biomedical Engineering curriculum. Not intended to be an exhaustive review of physiology, the course will instead emphasize key examples that highlight understanding of the interaction between the biomedical and engineering worlds.
3 credits
BME210 - Processing Fund for Biol Signa
Prerequisites: MATH 112 or MATH 238 with a grade of C or better. This course will introduce the fundamentals of filtering and processing specifically designed for applications using biologically inspired signals. This course will provide an introduction to computation and data analysis using MATLAB - an industry standard programming and graphical environment that is employed in several core and elective courses in engineering. A major component of this course is the application of digital signal processing to biologically inspired signals using MATLAB.
3 credits
BME301 - Electrical Fundamentals of Biomedical Engineering
Prerequisites: Grade of C or higher in PHYS 121 and MATH 112. Pre or Corequisites: FED 101. Course lectures and laboratories will address important issues for biomedical engineers at the introductory level; covering the origins of bio-electric signals and the instrumentation involved in collection of biopotentials from the electrodes to processing of the signals on the computer. Some other topics included are the transducers/sensors and modern engineering software used in bio-instrumentation. Laboratory work will provide hands-on experience in all of these areas. The course will also address practical issues in design of medical devices such as noise, resolution, linearity, and saturation. This course is offered in Studio format that involves the integration of lectures and labs into one highly participatory structure.
3 credits
BME302 - Mechanical Fundamentals of Biomedical Engineering
Prerequisites: Grade of C or higher in PHYS 121 and MATH 112. Course lectures and laboratories will address important issues covering the mechanical fundamentals that are important bases for later learning experiences. This course introduces the students to to engineering mechanics and how those principles are relevant to biomechanical issues. This course is offered in Studio format that involves the integration of lectures and labs into one highly participatory structure.
3 credits
BME303 - Biological and Chemical Foundations of Biomedical Engineering
Prerequisites: Grade of C or higher in CHEM 126 or CHEM 122. This course covers organic chemistry, biochemistry and cellular mechanics in sufficient depth to give biomedical engineering students a strong enough background for them to understand the introductory aspects of the discipline, which focus on the application of engineering principles to medicine and surgery.
3 credits
BME304 - Material Fundamentals of Biomedical Engineering
Prerequisites: A Grade of C or higher in (CHEM 126 or CHEM 122) and PHYS 111.This course is an introduction to the field of biomaterials with an emphasis on the wound healing process and interactions between the human body and implanted devices fabricated from various types of biomaterials. The thrust of this course will be to illuminate the processes occurring at the tissue-biomaterial interface. Attention will be given to the biological events occurring at the molecular level on the surface of an implanted device. The nature of these surfaces and the physiological consequences of these processes will be examined in terms of how the body and functioning of the device are impacted.
3 credits
BME311 - Co-op Work Experience
Restriction: sophomore standing or above, approval of department, and permission of Career Development Services. Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated by the co-op office and approved by the department. Mandatory participation in seminars and completion of a report.Note: Normal grading applies to this COOP Experience
3 credits
BME321 - Adv Mechanics for Biomed Engr
Prerequisite:BME 302 with a grade of C or better This course provides an understanding of engineering mechanics, especially as applied to biomechanical systems. Students should be familiar with static equilibrium analysis and concepts of stress and strain. Course topics include method of sections, area moment of inertia, mechanical properties of materials, torsion, bending, stress transformation, Mohr’s circle, and deflection of beams.
3 credits
BME333 - Biomedical Signals and Systems
Prerequisites: BME 301, MATH 222, (BME 210 or BME 310). BME Tools such as the Laplace and Fourier Transforms, time-frequency analysis are introduced. Applications include signals and noise, processing of the ECG, mathematics of imaging and derivation of useful physiological parameters from input signals.
3 credits
BME351 - Introduction to Biofluid Mechanics
Prerequisites: BME 302, MECH 236 and (MECH 320 or BME 321). Introduction to the principles of fluid flow. Basic fluid principles, such as fluid properties, fluid statics, conservation of mass, momentum, and energy will be discussed and presented in BME context. Special attention will be given to the non-Newtonian nature of blood, viscous flow in arteries, unsteady flows, and to the fluidic output of the heart. The textbook material will be supplemented throughout the course to emphasize examples relative to BME.
3 credits
BME352 - Thermal Science for Biomedical Engineering
Prerequisites: MATH 112, PHYS 111, CHEM 126, BME 111. Corequisites: MATH 211 or MATH 213. Thermal Science is the field of study that includes aspects of thermodynamics, heat transfer, fluid flow, and mass transport that are important to biomedical engineering. This includes phase change of substances, energy, power, heating, and cooling. The course will cover fundamental concepts in each of these areas with specific attention to biomedical technologies and physiological processes. Analytical methods and computer simulation tools will be used in the course.
3 credits
BME372 - Electronics of Medical Devices
Prerequisites: BME 111 and BME 301 with a C or better. The first of a two-semester sequence that covers the design of electronic circuits for Biomedical applications. This course covers basic operational amplifier circuits as well as the operation of semiconductor diodes and transistors. An introduction to digital logic circuits is also provided. Computer simulation as well as hands-on breadboarding of electronic circuits are used throughout the course to supplement the lectures.
3 credits
BME373 - Biomedical Electronics II
Prerequisite: BME 372. This is a continuation of BME 372 emphasizing biomedical applications of oscillators, active filters, and wave-shaping circuits.
3 credits
BME382 - Engineering Models of Physiological Systems
Prerequisites: BME 111, BME 301, BME 302 and MATH 222 all with a C or better. Students learn to develop quantitative models of organs and organ systems from an engineering viewpoint. Students translate their understanding of physiological systems into models that evolve dynamically based on engineering block diagrams. Additional topics include: hierarchical structure, sensitivity analysis, parameter estimation, negative feedback control, and characteristic traits of models. Students will use models to gain insight into how a physiological system functions and to design a biomedical engineering device or procedure that interacts with the physiological system. Systems studied include the cardiovascular system, gas exchange in the lungs, nerve and muscle action potentials, and musculo-skeletal spinal reflex.
3 credits
BME383 - Measurement Lab for Physiological Systems and Tissue
Prerequisites: BME 302, (BME 210 or BME 310), (MATH 279 or MATH 333). Through laboratory experiences, students will apply engineering methods for measuring and interpretating the properties of physiological systems and biological tissues. Topics include measurements relevant to cardio-pulmonary, nerve and muscular systems.
3 credits
BME384 - Biomechanics Laboratory
Prerequisites: BME 302, MECH 236, BME 321, (MATH 279 or MATH 333), (CS 101 or BNFO 135 or CS 115 or BME 210). This course is an introduction to the experimental analysis of the biomechanics of human motion. Laboratory experiments include the application and integration of anatomical and mechanical concepts to a wide variety of activities. Students will develop basic competence in a systematic approach to the observation, analysis and evaluation of human movement in clinical, educational, and industrial environments.
3 credits
BME385 - Cell and Biomaterial Engineering Laborarory
Prerequisite: MATH 112, PHYS 121, BME 304 and (MATH 279 or MATH 333) all with a C or better. This laboratory course is designed to provide students with valuable hands-on experience in the field of cellular and biomaterial engineering. Experiments include biomaterial fabrication and characterization, mechanical testing of biomaterials, colorimetric protein assay, cell-based assay, the basics of cell culture techniques, the basics of light and electron microscopy, and image capture and analysis. A lecture on the principles of a given technique will be followed by laboratory activity.
3 credits
BME386 - Biosensor and Data Acquisition Lab
Prerequisites: BME 210 and BME 301. Laboratory exercises involve projects at all levels of a medical device system from sensors to data acquisition and data processing. The course will introduce measurements for different sensors with Biopac Amplifiers and Arduino Microprocessors. Circuits are constructed to condition the signals from sensors and convert them into a format that can be displayed or acquired into a computer. The final projects help to develop the skills to integrate various parts of a medical device system, collect and analyze data and troubleshoot a device.
3 credits
BME411 - Co-op Work Experience
Prerequisites: BME 311 and completion of sophomore year, approval of department, and permission of Career Development Services. Students gain major-related work experience and reinforcement of their academic program. Work assignments facilitated by the co-op office and approved by the department. Mandatory participation in seminars and completion of a report. May count as BME or approved elective. Grade will now be issued as a letter grade.
0 credits
BME420 - Advanced Biomaterials Science
Prerequisites: BME 302, BME 304, and (MTSE 301 or MTEN 201). The goal of this course is to understand material selection, important properties of materials for use in the body, and failure modes of applied biomaterials. The course will cover the structure and properties of materials used as biomaterials including metals, ceramics, synthetic polymers, and biopolymers. The structure of these materials will be explored to understand how it defines the behavior of a material. The bulk behavior of materials will be reviewed, including the generalized Hooke's Law, and new concepts will be introduced (including thermal strain, surface properties, and viscoelasticity). Students will be presented with problems of property characterization, failure analysis and performance testing. Students will work in teams to analyze a marketed implant or device using biomaterial(s) using the tool and concepts learned in the course.
3 credits
BME422 - Biomaterials Characterization
Prerequisites: MATH 112, PHYS 121, BME 304 and (MTSE 301 or MTEN 201) all with a C or better. The quantum mechanical origins of spectroscopy, the relationship of spectroscopic behavior to thermal characteristics of a material, and the differences in approach to the chemical and physical characterization of synthetic and biological polymers are discussed.
3 credits
BME427 - Biotransport
Prerequisites: BME 303 or (R120 201 and R120 202) or (BIOL 201 and BIOL 202) and MATH 222 and BME 352. This course is an introduction to transport phenomena in biological systems. The objective of this course is to gain knowledge of the basic principles of transport phenomena. The course will cover conservation relations in fluid transport with an emphasis on conservation of mass at the tissue and cellular levels. Topics will include fundamentals of mass transport and applications such as transport in porous media, transvascular transport and drug delivery.
3 credits
BME430 - Fundamentals of Tissue Engineering
Prerequisites: BME 302 and MATH 222 and (BME 303 or R120 201 and R120 202 or BIOL 201 and BIOL 202), and (MTSE 301 or MTEN 201). This course is an introduction to the field of tissue engineering as a therapeutic approach to treating damaged or diseased tissues in the biotechnology industry. In essence, new and functional living tissue can be fabricated by delivering cells, scaffolds, DNA, proteins, and/or protein fragments at surgery. This course will cover the advances in the fields of cell biology, molecular biology, material science and their relationship towards developing novel "tissue engineered" therapies.
3 credits
BME451 - Biomechanics I
Prerequisites: MECH 236; BME 321. Tensor analysis. Kinematics of continuous media. Stress. The elastic solid. Newtonian fluid. Conservation principles of mass, momentum and energy. Viscometric flows. Formulation of constitutive equations. Applications to the modeling of bone and other living tissues.
3 credits
BME452 - Mechanical Behavior and Performance of Biomaterials
Prerequisites: BME 302, BME 304, MATH 222, (MATH 279 or MATH 333), and BME 321. Biomaterial selection and performance is essential to the design and implementation of most any biomedical application. Students will learn about important properties of materials for use in the body and failure modes of applied biomaterials. Material behavior will be reviewed, including the generalized Hooke's Law, and new concepts will be introduced including thermal strain, surface properties, and viscoelasticity. Material biocompatibility will be introduced in regards to body responses including cell and tissue interaction, toxicity and safety.
3 credits
BME471 - Principles of Medical Imaging
Prerequisites: BME 301, (BME 210 or BME 310). This is an introductory undergraduate course in biomedical imaging. This course will cover medical physics, instrumentation, data aquisition and processing to generate structural and functional images. A number of modalities including X-ray, Computer Tomography, Ultrasound, and magnetic resonance imaging systems are included. This course is an elective in the Bioinstrumentation track.
3 credits
BME472 - FDA Regulation of Medical Devices
Prerequisites: BME 301. Restrictions: none. The course will teach the FDA regulatory process including design documentation and quality management system to attain FDA approval for medical devices. Statistical tests for the development of human randomized clinical trials and non-clinical bench testing of medical devices will be taught with safety standards for medical devices. A project will be assigned to teach students how to apply for FDA approval for a student-selected medical device.
3 credits
BME478 - Introduction to CAD for Biomechanics
Prerequisites: BME 302 and (MECH 320 or BME 321). Introduction to Computer Aided Designing and analysis as applied to biomedical engineering design programs. Topics include theoretical insight into the process of design and geometrical modeling and design using industry standard CAD (Computer Aided Design) software packages. The course will also include several projects involving the application of design principles to standard problems in biomedical design.
4 credits
NANO488 - Intro to Nanotechnology
Prerequisites: Chem 121 or Chem 125 and Math 112 and Phys 121 all with a C or better; Junior or senior standing; GPA higher than 3.0 on a 4.0 scale. This course introduces students to nanotechnology thought a variety of topics that cover nanotechnology from different points of view including engineering, chemistry, biology, management, ethics, public safety and policy, mathematics, etc. The course is designed in a studio format that complements lectures with hands-on, experimental activities. The course will feature one or two lectures per semester given by invited nanotechnology-experts from NJIT or elsewhere. This course is mandatory for any students willing to take the Minor in Nanotechnology.
3 credits
BME489 - Medical Instrumentation
Prerequisites: BME 301 and (BME 210 or BME 310). This course covers the hardware and instrumentation needed to measure variables from different physiological systems. The following topics will be taught: electrodes, sensors and transducers. Bioelectric amplifiers, electrical safety and computing. Applications include the study and design of instrumentation for measurement of the ECG, EEG, EMG, respiratory system, nervous system in general.
3 credits
BME491 - Research and Independent Study I
In depth research experience taught under the guidance of a professor typically within a laboratory. Approved requirements are needed for engineering credit. Research thesis required. Needs permission of professor.
3 credits
BME492 - Research and Independent Study II
Prerequisite: BME 491. Approved requirements are needed for engineering credit. Research thesis required. Needs permission of professor.
3 credits
BME493 - Honors Research Thesis I
Prerequisites: GPA 3.5, an appropriate research methods course and COM 313. Part of a two semester undergraduate research thesis. Students will learn how to formulate a hypothesis, design a scientific based experiment, analyze data using statistics, interpret data, and describe work within oral defense and written thesis.
3 credits
BME494 - Honors Research Thesis II
Prerequisite: BME 393 Part of a two semester undergraduate research thesis. Students will learn how to formulate a hypothesis, design a scientific based experiment, analyze data using statistics, interprete data, and describe work within oral defense and written thesis.
3 credits
BME495 - Capstone Design I
Prerequisites: BME 372 or MTSE 301 or MTEN 201 or (MECH 236 and MECH 320) or (MECH 236 and BME 321) or BME 386. Restrictions: Senior Standing. The course introduces the student to the definition of design as well as introducing issues of intellectual property, bioethics and safety, and professional societies. The goal of this course is to provide students with the guidance to choose a capstone design topic and advisor conduct library/search engine background research and to prepare the design proposal for their chosen project.
2 credits
BME496 - Capstone Design 2
Prerequisite: BME 495. Implementation of the project approved in BME 495. This portion of the project includes library research, time and cost planning, oral and written reports, as well as construction, troubleshooting and demonstration of a working prototype.
3 credits
BME498 - ST:
No course description is available.
3 credits
BME590 - Graduate Co-Op Work Exper I
No course description is available.
1 credits
BME591 - Graduate Co-Op Work Exper II
No course description is available.
1 credits
BME592 - Graduate Co-Op Work Exper III
No course description is available.
1 credits
BME593 - Graduate Co-op Work Experience IV
Restriction: One immediately prior 3-credit registration for graduate co-op work experience with the same employer and approval of departmental co-op advisor and the Division of Career Development Services. Must have accompanying registration in a minimum of 3 credits of course work.
0 credits
BME601 - Seminar
Required every semester of all master's students in biomedical engineering who receive departmental or research-based support and all doctoral students. To receive a satisfactory grade, students must attend at least five seminars per semester, as approved by the seminar supervisor.
1 credits
BME611 - Engineering Aspect of Molecular and Cellular Bio I
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ N551 to enrich the crossover between engieering and life sciences. Course topics parallel those covered in N551 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.
1 credits
BME612 - Engineering Aspects of Molecular and Cellular Bio II
Molecular and cellular biology is a foundation of the understanding of the biological sciences and is vital to the study of advanced biomedical engineering. This course is to be taken simultaneously with UMDNJ N552 to enrich the crossover between engineering and life sciences. Course topics parallel those covered in N552 and both add engineering relevance, and provide engineering students with a stronger understanding of molecular and cellular biology. For students in joint BME PhD program.
1 credits
BME650 - Clinical Physiology & Neurophy
Prerequisites: BME 111, BME 303, BME 382 or permission of the instructor. Topics to be covered include gastrointestinal tract, pulmonary respiratory system, renal and liver functions, blood and hemodynamic, cardiovascular and cerebrovascular function, and understanding of neurophysiology in human neurological diseases.
3 credits
BME651 - Principles of Tissue Engineering
Tissue Engineering is a therapeutic approach to treating damaged or diseased tissues in the biotechnology industry. In essence, new and functional living tissue can be fabricated using living cells combined with a scaffolding material to guide tissue development. Such scaffolds can be synthetic, natural, or a combination of both. This course will cover the advances in the fields of cell biology, molecular biology, and materials science towards developing novel "tissue engineered" materials.
3 credits
BME652 - Cellular and Molecular Tissue Engineering
This course explores molecular, cellular and tissue level interactions that are an important component of all tissue engineering strategies. Topics include how a cell moves, reacts and maintains viability and function based on its surroundings. We will discuss how to engineer our materials, tissue grafts and implants to integrate with the body. We will also liearn about bodily reactions and the biocompatibility of tissue engineered devices such as immunoreactivity and blood coagulation.
3 credits
BME653 - Micro/Nanotechnologies for Interfacing Live Cells
In this course, we will study technologies and tools available for interfacing live cells from a sub-cellular, single-cell, and multi-cellular (tissue models) approach. We will introduce key concepts of the biology of cells and tissues and will explore the technologies (micro-/nanotechnologies) and tools (sensors and actuators) available for the investigation of cell and tissue biology. Same as ECE 653.
3 credits
BME654 - Cardiovascular Mechanic
Fundamental biomechanical mechanisms at work in the cardiovascular system. Topics include the fundamental molecular structure of heart muscle, the biomechanical principles that transform the contraction of heart muscle into stress-strain functions of muscle fibers, pressure-volume flow relations in the vasculature when it is considered as a hemodynamic (blood hydraulic) system, growth and disease of the cardiovascular system, resistance, compliance, inertance, and catheter-tip transducers.
3 credits
BME655 - Advanced Characterization of Biomaterials
Prerequisites: MTSE 301 or undergraduate equivalent, BIOL 201 or undergraduate equivalent, one semester of undergraduate organic chemistry. With a focus on contemporary biomaterials in the published literature and clinical practice, biomaterial chemical and mechanical testing will complement synthesis theory. Communication and articulation of ideas will be honed in the form of literature debates, write-ups, demonstration/performance of analytical techniques, and concluding with translation of biomaterials that will include entrepreneurship and regulatory aspects.
3 credits
BME656 - Research Skills in Stem Cell
Stem cells have emerged as new therapeutic potential and offer great opportunities for regenerative medicine, biotechnology and the pharmaceutical industry. This course is intended for graduate students interested in stem cell bioengineering and tissue engineering. The course will cover stem cell biology and biomedical engineering applications for cell-based regeneration therapies. It will discuss techniques for engineering of stem cells and the current literature in this rapidly evolving field.
3 credits
BME661 - Neural Engineering
Neural Engineering focuses on understanding how the brain functions using engineering principles. The course discusses different instrumentation and signal processing algorithms to study how the brain functions, how to detect different pathologies and new applications for research. Topics include; basic overview of neurology, vector populations, neural networks, vision research, functional MRI, functional electrical stimulation, neural prosthetics, and other advanced research topics studying neurology.
3 credits
BME667 - Bio-Control Systems
The course provides an introduction to dynamic and control in biological systems, with particular emphasis on engineering aspects of biological oscillators/waves which govern the basic operations of all living organisms and especially higher order life forms. A combination of theoretical and simulation tools will be applied to analyze the qualitative and quantitative properties of selected biological systems. Feedback and control mechanisms in selected biological systems will be introduced. Same as ECE 667.
3 credits
BME668 - Medical Imaging Systems
This course provides a detailed introduction to medical imaging physics, instrumentation, data acquisition and image processing systems for reconstruction of multi-dimensional anatomical and functional medical images. Three-Dimensional medical imaging modalities including X-ray, Computer Tomography, Magnetic Resonance Imaging, Single Photon Emission Computer Tomography, Positron Emission Tomography, Ultrasound and optical imaging modalities are included. Same as ECE 668.
3 credits
BME669 - Engineering Physiology
To enable students to apply basic tools in engineering analysis, mathematics, computer science, general physics and chemistry courses so that they can develop models that quantitatively predict the functioning of physiological systems in the human body. To enable students to apply engineering systems analysis to systematic physiology and employ the ideas of feedback control, signal procession, mathematical modeling and numerical simulation. Same as ECE 669.
3 credits
BME670 - Introduction to Biomechanical Engineering
Prerequisites: undergraduate thermodynamics, statics, and dynamics. Introduction to biomechanical engineering of physiological systems; fluid flow, structural, motion, transport, and material aspects; energy balance of the body, and the overall interaction of the body with the environment. Same as ME 670.
3 credits
BME671 - Biomechanics of Human Structure and Motion
Prerequisites: undergraduate statics, kinematics, and dynamics. Principles of engineering mechanics and materials science applied to human structural and kinematic systems and to the design of prosthetic devices. Topics include anatomy; human force systems; human motion; bioengineering materials; and design of implants, supports, braces, and replacements limbs.
3 credits
BME672 - Biomaterials
Prerequisite: MECH 320 (see undergraduate catalog for description) or the equivalent. Materials and processes used to develop devices that are implanted in the human body; clinical aspects of biomechanical engineering; federal government requirements for design and testing of human implant devices; biocompatibility, metal implant devices, material design parameters, plastic and ceramic devices, sterilization techniques, and their effect on biocompatibility.
3 credits
BME673 - Biorobotics
Basics of control of a robot and telemanipulation are studied. Computer simulations, MATLAB are used to explore biomimetic autonomous robots. This is a studio-based course with hands-on exercises with small robots and actuators. Topics include understanding how biological robots (humans and animals) differ from designed robots, as well as sensors (touch, stereo and position), actuators (muscles, smart materials), and intelligent (neural and computer controlled systems.
3 credits
BME674 - Principles of Neuromuscular Engineering
Neurophysiology, motor control and robotics are used to study the human motor system. Sensorimotor learning and acquisition of new motor skills are emphasized. Topics include the central nervous system, muscle properties, spinal motor circuitry and dynamics of limb motion. The relation of motor control problems to neurophysiology of the motor system and how motor disorders affect movement control are studied. MATLAB and Simulink are used in simulations and movement date analysis.
3 credits
BME675 - Computer Methods in Biomedical Engineering
This course uses MATLAB to concentrate on methods that allow students to produce original software that can be used to acquire, process, analyze and present data. Topics include advanced graphics and animation, graphical user interfaces, interfacing to and data acquisition from laboratory instrumentation, filtering and processing of acquired data, and interfacing to user interfaces (e.g. joysticks). Applications in speech, bioelectrical signals, images and virtual reality will be included.
3 credits
BME676 - Computational Biomechanics
Prerequisites: BME 670 or equivalent. The use of commercially available software to solve complex engineering problems has become standard practice to reduce time and cost and results in a better product. This is an intro course on computational methods and the use of commercial software such as ANSYS, Fluent, and MATLAB to solve problems related to the BME device industry. Suitable for students interested in Computer Aided Design and Engineering (CAD/CAE).
3 credits
BME677 - CAD for Biomechanics and Biomaterials
Introduction to Computer Aided Design theory and application using software. Topics include datum planes, extrude, cut, sweep, swept cuts, and parallel, rotational, and general blends. Assemblies and generating, dimensioning, editing, and modifying drawing views and creation of balloons, imaging and scanning techniques of anatomical structures such as bone and arteries and 3D printing are also covered.
3 credits
BME678 - Design of Orthopedic Implants
Prerequisite: BME 677. First of a two part course on design of orthopedic implants using ProEngineer. Additional topics include machanical properties of implant materials, material selection and introduction to FEA. Methods for prototype development with the use of 3D printing will also be discussed. A critical objective of this course is the preparetion of design reports and project presentations.
3 credits
BME679 - Advanced Design of Orthopedic Implants
Prerequisites: BME 677, BME 678 or equivalent. Advanced modeling techniques for the design of hip, knee, and spine implants. Mechanical properties of materials, including wear and failure modes associated with typical implants. Kinematics and surgical protocols of implants will be discussed. Course will cover assemblies and FEA analysis of implants. Additional topics include large deformations, fatigue, optimization, review and analysis of results.
3 credits
BME680 - BioMEMS Design and Applications
The advance of bioMEMS (Micro Electrical Mechanical Systems) technology is a key component in making the next generation medical diagnostic tools possible. We will learn how bioMEMS devices are fabricated and combine engineering analysis with knowledge of known biological responses and biomolecule interactions to understand how bioMEMS are designed and function. Topics will include biological, mechanical, electrical, and chemical biosensors, and microfluidics as applied to biotechnology.
3 credits
BME682 - System Mgmt for Medical Device
This course will provide a detailed overview of Project Management techniques and methods applied to medical devices and show the integration of medical device Design Controls from 21 CFR820.30. General knowledge from the field of Project Management will be conveyed from the perspective of engineering or science personnel in the industrial medical field, particularlywith regard to FDA Quality System Regulations (QSR), ISO 13485 guidelines, and Good Clinical Practices (GCP's) for running clinical trials. Students will also take part in practical problem solving simulations based on real-world examples of medical device project anomalies. The combination of specialized project management knowledge for a heavily regulated area and realistic classroom simulation will provide a basis for those interested in commercial medical device development.
3 credits
BME684 - Medical Device Development
This course will provide a detailed overview of medical device development from a realistic industrial and academic perspective. The processes used in corporations and academic laboratories to conceive and develop devices will be explored from a research, regulatory, clinical, QA/QC, marketing, engineering, and legal perpective under the umbrella of project management techniques. Material will be presented as an aide to students who wish to decide on careers in either industry or academia.
3 credits
BME686 - Intro. to Instrumentation for Physiomeasurements
Introduction to instrumentation for students without instrumentation background only. This course teaches the hardware and instrumentation needed to measure variables from different physiological systems. Electrodes, sensors and transducers, bioelectric amplifiers safety and digital acquisition will be discussed. Hardware for measurement of the ECG, EEG, EMG, respiratory system, nervous system, clinical laboratory instruments, electrical safety and computers in biomedical instrumentation.
3 credits
BME687 - Design of Medical Instrumentation
Prerequisite: undergraduate course in electronics. Principles and practice of medical instrumentation. Instrument components and medical instrument systems design. Examples taken from electrocardiography, clinical chemistry, medical imaging. Microprocessor-based systems emphasized.
3 credits
BME688 - Virtual Biomedical Instrument
Introductory course to the programming language, LabVIEWTM. Topics include loops, arrays, clusters, data acquisition, and file input/output. Students will learn how to apply these basic concepts into the development of algorithms. Examples relevant to the biomedical industry will be given how to debug and solve complex programming problems. By the completion of the course, students will be able to develop programs to automate processes and experimental designs.
3 credits
BME698 - Selected Topics
Selected topics for Biomedical Engineering.
3 credits
BME700B - Master's Project
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master’s students registering for the first time in Master’s Project must take simultaneously the INTD 799 (Responsible Conduct of Research) course, if they have not already taken it.
3 credits
BME701B - Master's Thesis
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty. Master’s students registering for the first time in Master’s Thesis must take simultaneously the INTD 799 (Responsible Conduct of Research) course, if they have not already taken it.
3 credits
BME701C - Master's Thesis
Restriction: written approval of project advisor. An extensive paper involving design, construction, and analysis, or theoretical investigation. Joint projects with industry or governmental agencies may be acceptable. Work is carried out under the supervision of a member of the department faculty.
6 credits
BME725 - Independent Study I
Restriction: departmental approval. Program of study prescribed and approved by student's faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master's degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status.
3 credits
BME726 - Independent Study II
Restriction: departmental approval. Program of study prescribed and approved by student's faculty coordinator. This special course covers areas of study in which one or more students may be interested but is not of sufficiently broad interest to warrant a regular course offering. Master's degree students cannot count BME 725 as degree credit but can count these credits to qualify for full-time status. This course is not available to master's students.
3 credits
BME741 - Basic Plasma Physics with Spac
Prerequisites: PHYS 611, PHYS 621 or other equivalent, or approval of the instructor. The course will introduce students to basic concepts of plasma physics and its applications to laboratory experiments and space research. The course will cover the following topics: particle motions in magnetic field, adiabatic invariants, magnetic traps, radiation belts, electromagnetic waves in plasma, electrostatic oscillations, waves in magnetized plasma, collisional processes in plasma, kinetic effects on plasma waves, Landau damping, wave instabilities, plasma as fluid, magnetohydrodynamics, magnetic configurations of laboratory and space plasma, MHD instabilities, reconnection, helicity, dynamo theories, the origin of cosmic magnetic fields, stochastic processes, Fermi process, particle acceleration, and cosmic rays.
3 credits
BME760 - Modeling in Func Brain Imaging
Prerequisites: Although no prerequisites are required, BME 310, ECE 640 or other undergraduate and graduate courses covering knowledge on signals and systems in discrete time domain are suggested to prepare for this course. This course will focus on introducing biomedical computing techniques needed for functional MRI data pre-processing, and individual-level and group-level analyses. Several projects will be assigned for hands-on training in implementing the introduced knowledge.
3 credits
BME772 - Adv Biomats for Lab and Clinic
Prerequisite: BME 672 or equivalent. Background in Materials Science is encouraged. Advanced course on the design, characterization and clinical/research performance of biomaterials that have or may receive acceptance in medicine or as a biomedical research tool. The course requires the student to integrate background in chemistry, physics, cell and molecular biology, tissue engineering and materials science to review and summarize the scientific rationale for materials that have gained acceptance as medical devices, cell culture or diagnostic tools.
3 credits
BME774 - Principles of Neurorehabilitation
This is a research-focused course providing in-depth review of current studies in the following fields: Pathophysiology of disability; Advanced therapeutic interventions; Emerging neurorehabilitation technologies that are intended to encourage neural reorganization and relearning; Novel interfaces through chronic implementation in the brain, spinal cord and muscles used in deep brain stimulation, brain-machine interfaces, and functional electrical stimulation and Methods of assessing outcomes.
3 credits
BME777 - Neuromodulation
Restrictions: Course is designed for PhD Students in BME; All others need Instructor's approval. This course will first cover the fundamentals of electrical neural stimulation by looking at passive and active neuronal membrane models to prepare the students to better understand the mechanisms underlying neuromodulation applications. Then, the topics will expand into more practical aspects of neural stimulation, such as the electrode technologies used and various techniques of electrical neuromodulation in the central and peripheral nervous system. Throughout the course many sensory and motor neural prosthetic applications, e.g. spinal cord and deep brain stimulation devices, will be discussed from textbooks and journal publications. This is a lecture-based course covering a diverse area of materials borrowed mostly from electrophysiology and basic engineering concepts and students should be prepared to read one or two book chapters or journal papers before each class. Knowledge of basic circuits, such as RC circuits and KVL and KCL Analysis, is required. This course is built upon basic engineering concepts (e.g. basic electric circuits, differential equations) and programming skills (Matlab) that are covered at the undergrad level in electrical and biomedical engineering programs.
3 credits
BME788 - Selected Topics
Selected topics for Biomedical Engineering.
3 credits
BME790A - Doctoral Dissertation
Required of all students working toward the Ph.D. in Biomedical Engineering. A minimum of 36 credits is required. The student must register for at least 6 credits of dissertation per semester; registration for additional credits may be permitted beyond the 6, with the approval of the advisor, up to a maximum of 12 credits per semester. If the student is still actively engaged in the research after completion of 36 credits, continued registration of 3 credits per semester is required.
1 credits
BME791 - Graduate Seminar
No course description is available.
0 credits
BME792 - Pre-Doctoral Research
Restriction: Permission of the department. For students admitted to the program leading to the Ph.D. in Computer Engineering or Electrical Engineering. Research carried on under the supervision of a designated member of the department faculty. If the student's research activity culminates in doctoral research in the same area, up to a maximum of 6 credits may be applied toward the 36 credits required under BME 790 after the student fulfills requirements of doctoral candidacy.
3 credits

Section Tally

The information displayed within is from the respective higher education institution(s).

Contact info@sectiontally.com for any questions or concerns.